

Effect of Temperature on the Defensive and Predatory Stinging Behavior of the Scorpion Hadrurus obscurus

Enriquez, A.; Bennett, M.; Iniguez, M.; Rios, E.M.; Stone, B.

Mentor: Nisani, Z*. (znisani@avc.edu)

Department of Biological and Environmental Sciences, Antelope Valley College, Lancaster 93536

Behavior

Stance

Orientation

Grasp

Failure

Grasp

Success

Cleaning

INTRODUCTION

- Scorpions display stinging behavior in both predatory and defensive context, while presenting variation in behavior due to their morphology, prey size and struggle intensity, and/or scorpion metabolism(Coelho et al., 2017, Carlson & Rowe 2009).
- Larger scorpion species with more powerful pedipalps rely more on their grasp and less on stinging while the opposite is true for smaller species with smaller pedipalps, due to greater struggle (Rein, 1993). As sit-and-wait predators, scorpions do not expel large amounts of energy actively hunting for their prey. They rely on vibration transmission through the substrate to feel prey in close proximity to strike (Stewart, 2006). This results in low energy expenditure overall
- Other arachnids have also displayed a positive relationship between temperature and physiological performance; the mite species Paratarsotomus macropalpis has been shown to reach larger sprint speeds in higher temperatures (Wu et al. 2010), and the tarantula Aphonopelma hentzi had a sprint speed that more than doubled when body temperature is raised from 15 to 40°C (Booster et al. 2015).
- This trend applies to scorpions as well. Carlson & Rowe (2009) demonstrated that Striped bark scorpions Centruroides vittatus exhibited significantly shorter sting latencies, higher sting rates, and faster sprint speeds at warmer temperatures. Similarly, the *Paruroctonus marksi* scorpion was shown to have the greatest sprint speed when its body temperature nears 28 °C, which correspond to about their ideal preferred temperature (Nisani et al. 2022a).
- The present study was conducted to determine if body temperature affects defensive stinging and prey-capture behavior in the desert hairy scorpion, *Hadrurus obscurus*. We hypothesized that higher body temperatures will increase *H. obscurus* strike time (time from initial probe to first sting) and decrease the number of probes needed to elicit first sting. Finally, we aim to determine if the prey-capture sequence of this species and the success rate is affected by environmental conditions such as temperature.

METHODS

PREDATORY BEHAVIOR

Scorpions were placed in a small glass arenas with sand substrate, (Figure A). Each arena was set up on a heating strip, set to different temperature (22°C, 32°C, or 42°C). Each scorpion was allowed to acclimate for five minutes. Their body temperature was checked with an infrared thermometer. A cricket was added to the opposite side of the arena.

- Scorpions predatory behavior was recorded and analyzed (Table 1,
- Figure B).

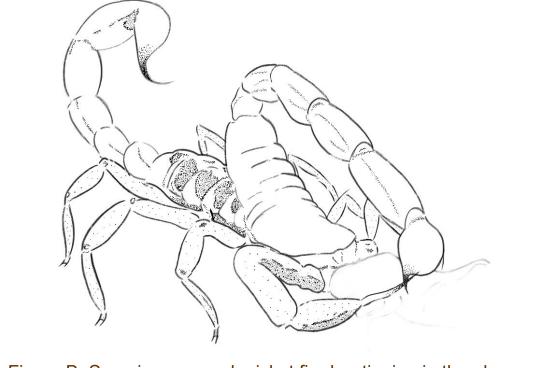
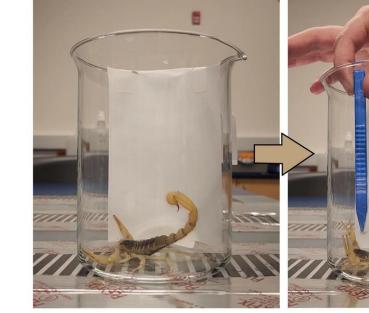
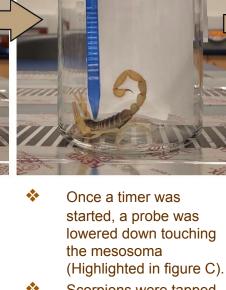



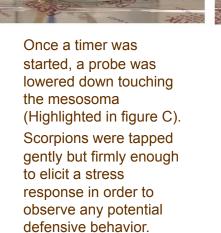
Figure B: Scorpion grasped cricket firmly, stinging in the above motion.

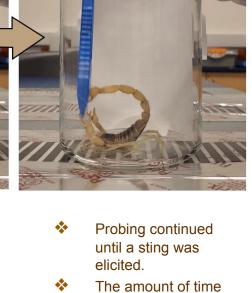
DEFENSIVE STINGING

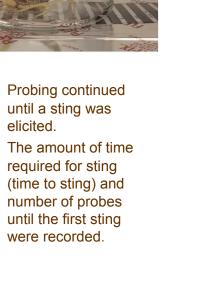
order to prevent injury to scorpions. The parafilm was disposed of and re-applied Three 800 mL beakers were set on the high temperature strip (26 - 28°C) and the

was confirmed using an


infrared thermometer.


other three were set on the low temperature strip (21 22°C). The desired temperature of each beake




thermometer.

confirmed using an

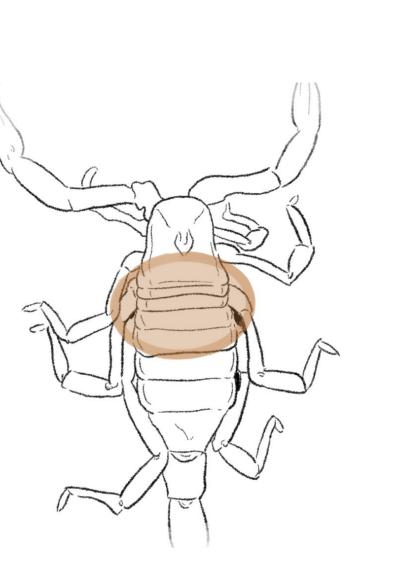


Figure C: The mesosoma, located at the top of the segmented tail & below scorpion head, was tapped with the

RESULTS

Prey-Capture Sequence

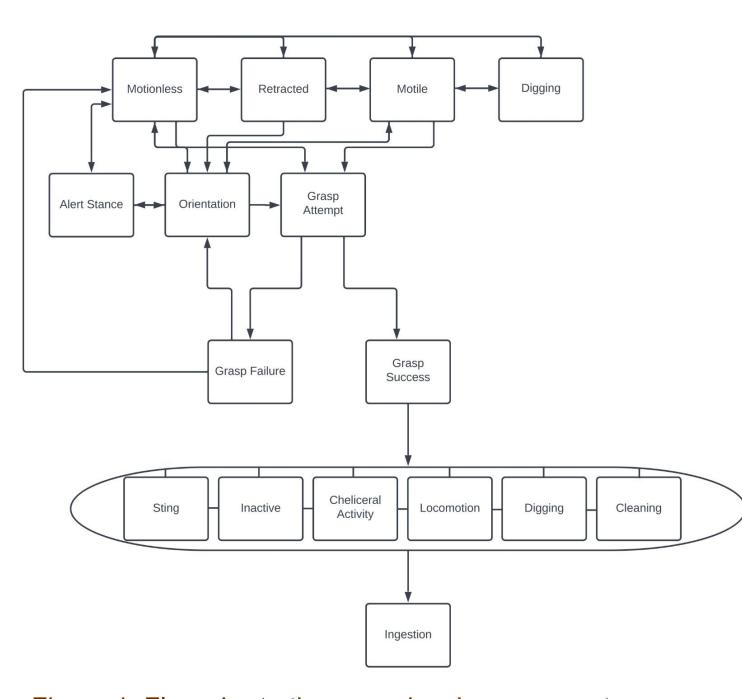


Figure 1: Flow chart ethogram showing prey-capture behavior sequences for Hadrurus obscurus. The behaviors observed flowed in the direction of the arrows. The oval with six behaviors inside indicates that those behaviors can precede or follow the others.

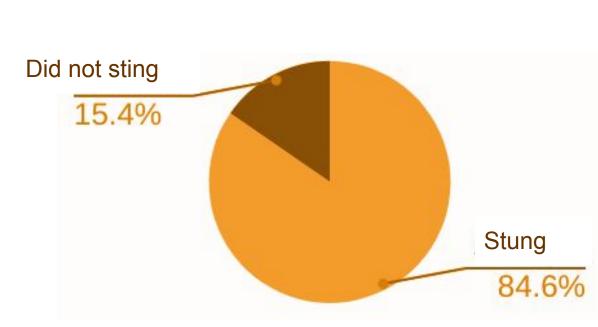
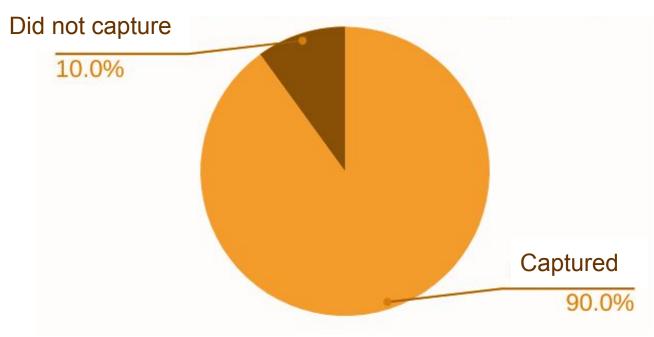
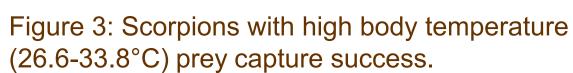




Figure 2: Percentage of scorpions that stung their prey post-capture.

How Temperature Effects Prey-Capture Behavior

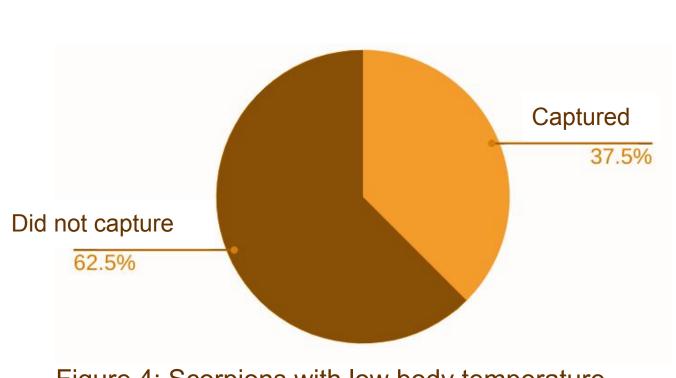


Table 1: Ethogram modified from Bub and Bowerman (1979)

and Stewart (2006). Description of behaviors.

Ambulation prior to feeding

and appendages drawn in

legs of the scorpion

toward detected prey

or both pedipalps

pedipalps

catching it

Prior to catching prey, the scorpion's relaxed

motionless state with its body raised above

Body is raised above the substrate while the

pedipalps are extended anteriorly and raised

Body in contact with the substrate, metasoma

Movement of the anterior part of the scorpion

Successful attempt at capturing prey with one

Metasoma and telson move forward toward

Protraction and retraction of chelicera as they

Repeating insert of either pedipalps or telson

prey, probing, then penetrating the prey

After catching its prey, scorpion remains

Ambulation of scorpion with prey after

into the sand after prey capture

Movement of sand using the pedipalps or

Attempt to capture prey in one or both

whether there is contact or not

open and close respectfully

Unsuccessful attempt at capturing prey,

Description

the substrate

Figure 4: Scorpions with low body temperature (20.6-22.9°C) prey capture success.

How Temperature Effects Defensive Stinging Behavior

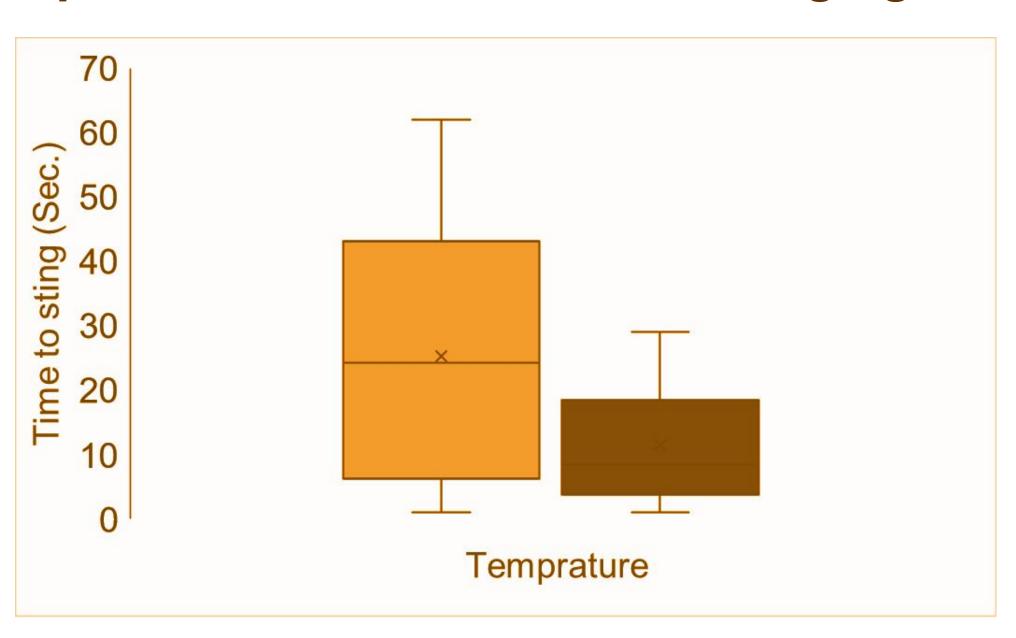


Figure 5: Scorpion defense response time by temperature (Low & High) treatment. The line in the box designates the median and the X is the mean. The reaction time was significantly shorter under high temperature, 11.5 ± 8.88 seconds, compared to low temperature, 25.29 ± 19.19 seconds, t(10) = 3.19, p =0.01. It took fewer probes (mean ± SE) for scorpions to sting under high temperature conditions, 6.64 ± 1.34 probes, than cooler treatment, 17.27 ± 3.72 probes.

CONCLUSIONS

Both defensive and predatory behavior in the H. Obscurus is affected by temperature. This allows for more information into the thermal ecology of desert ecosystems and for further understanding on how temperature-dependent behavioral adaptations may contribute in scorpion survival in general.

Predatory

- Temperature affected prey capture success (Figures 3 and 4). This may be explained by their enhanced metabolism and hence muscle function when warm. Environmental temperatures can have a significant effect on the biology of terrestrial ectotherms (Angilletta, 2009). Scorpions tend to be faster at warmer temperatures (Carlson & Rowe, 2009; Nisani et al., 2022a),
- Scorpions in a 27°C environment had the quickest capture time but no correlation between stinging and temperature when it came to prey capture. More efficient movement at 27°C may contribute to quicker capture of prey (Nisani et al., 2022a). In Mojave desert scorpions were most active at this temperature (Nisani et al., 2002b)
- Cleaning of the pedipalps and the telson were only observed after prey capture. It may be grooming behavior.
- Scorpions ate the prey in whichever direction it was caught, contradicting the observed behavior to eat prey head-first and the hypothesis that this is preferred for brain damage or avoidance of rear chemical defenses. This behavior may be species-dependent due to the differing natural prey that may or may not need these advantages to be subdued easily.

Defensive

♦ Temperature affected strike time and the number of probes required to provoke a defensive sting (Figure 5). This supports similar findings, such as the shorter latency and faster sting rates found at higher temperatures (Carlson and Rowe, 2009), as well as the increase of scorpion sting incidences during warmer temperatures or summer (Hurtado-Díaz et al. 2017).

LITERATURE

Angilletta, M.J., 2009. Oxford University Press, Oxford, UK.

Booster, N. A., Su, F. Y., Adolph, S. C., & Ahn, A. N. (2015). Journal of Experimental Biology, 218, 977–982.

Bub, K. & Bowerman, R.F. (1979) The Journal of Arachnology, 7, 243-353.

Carlson, B. E., & Rowe, M. P. (2009). The Journal of Arachnology, 37, 321–330.

Coelho, P., Kaliontzopoulou, A., Rasko, M., & van der Meijden, A. (2017) Functional Ecology, 31, 1390–1404.

Hurtado-Díaz, M., Guzmán-Ontiveros, J., Arias-Medellín, L. A., Hernández-Cadena, L., Moreno-Banda, G. L., Rodriguez-Dozal, S. L., Texcalac-Sangrador, J. L., Zúñiga-Bello, P. E., & Riojas-Rodríguez, H. (2017). International Journal of Climatology, 38, 2167–2173.

Nisani, Z., Cardenas, V., & Cox, J. (2022a). Journal of Arid Environments, 197, 104675.

Nisani Z., Frederick D., Garcia-Plascencia A., Lopez D., Miller R., & Trinh-Nguyen L. (2022b). Euscorpius 364.

Rein J. O. (1993). Sting Use in Two Species of Parabuthus Scorpions. The Journal of Arachnology 21:60-63.

Stewart A. K. (2006). Euscorpius 37:1-9.

Wu, G. C., Wright, J. C., Whitaker, D. L., & Ahn, A. N. (2010). The Journal of Experimental Biology, 213, 2551–2556.

ACKNOWLEDGEMENTS

We thank the Math, Science, and Engineering Division for its support of the Antelope Valley College Undergraduate Research Initiative (AVC-URI). The team leader was listed first followed by authors in alphabetical order (mentor Last). Many thanks to Daniel Midgley for his help with prey capture data collection and Diana Ferrassoli for help with scorpion collection. This project was supported by United States Department of Education grant P031S180004.